Главная » Ремонт
Призовой фонд
на декабрь 2018 г.
1. 1500 руб
Сайт Паяльник
2. Осциллограф DSO138
Сайт Паяльник
3. 200 руб.
От пользователей

Ремонт термопотов, продолжение

Эта статья посвящена диагностики неисправностей термопотов, связанных с нагреванием и подачей воды, на примере моделей Elenberg ТН-6030, Vitek VT-1188 и Vitek-1191 описанных ранее [1]. В статье даны советы по подключению электропитания к «сухому чайнику», т.е. чайнику без воды и к отдельным платам, необходимого для проведения измерений и диагностики отказов, что облегчает их ремонт.

В Интернете выложено много материалов по разборке термопотов. Проводить измерения удобнее, когда чайник устойчиво стоит в положении вверх дном. Для этого нужно снять его верхнюю, выпуклую крышку для залива воды. Отвёрткой отжимают защёлку на петле крышки и снимают её с оси, на которой она крепится. Подставкой для перевёрнутого термопота может служить пластиковое ведро, диаметр дна которого немного меньше диаметра ёмкости для кипячения воды. В ходе разборки термопота необходимо прозвонить все ТЭН-ы, термовыключатели и предохранители, которые есть в цепях питания, от одного контакта сетевой вилки до силовых контактов реле К1, и от другого контакта вилки до общего провода основной платы, прозвонить «земляной» контакт вилки с металлическими деталями корпуса чайника и проверить «землю» на замыкание с сетевыми проводами. На этом этапе выявляется большое количество неисправностей.

Вместо Elenberg ТН-6030 (Рис.1[1]) в настоящее время продаются его клоны: модели термопотов BRAND 34300 и KC-2011-B. Их схемы [2] аналогичны ТН-6030. (Рис. 1) Основные платы изделий имеют одинаковый код КС-87-В, они отличаются только типами и номиналами отдельных деталей, и отсутствием разъёма CN1 на общей плате КС-2011-В. Рис. 2. Сетевой провод соединен с ней дополнительным контактом 1.1 разъёма SP1. Маркировка элементов платы КС-2011-В в статье указана по схеме ТН-6030. Подключать к сети 220 В для диагностики неисправные термопоты этих типов нецелесообразно, потому что их источник вторичного питания мощностью до 25 мА служит только для питания схемы управления реле К1. 

Индикатор кипячения HL1 включается при замыкании контактов К1.1 реле К1 или термовыключателя SF1. Индикатор подогрева HL2 и ТЭН подогрева ЕК1 включены постоянно. При отсутствии принудительного кипячения, не снимая платы с её места, с выводов R1 измеряют ёмкость С1 чтобы исключить его обрыв или дефекты пайки выводов. Затем прозванивают омметром диоды VD1 – VD4 выпрямительного моста и стабилитрон VD6, и исключают пробой С2 и С3. Прозвонкой между выводами «+» и коллектором VT2 исключают замыкание катушки реле К1 или пробой диода VD7. Затем к выводам диодов моста VD1 – VD4 подключают зажимами или припаивают два провода и подают на плату напряжение 12 – 16 В от внешнего источника. Его полярность, «+» и «–» указана на Рис. 2 . После чего нажимают кнопку SB1 "Кипячение", если есть щелчок включения реле К1, между контактами разъёмов CN3 и CN4, предварительно отключив от него ТЭН-ы, измеряют сопротивление замкнутых контактов К1.1, в норме оно меньше 0,5 Ом. Если после нажатия на SB1 щелчка нет, подключают вывод R4, отмеченный на Рис. 2 зелёной звёздочкой к «+». Если реле щелкнуло, устраняют обрыв в цепи SB1. Если щелчка нет, соединяют анод VD7 с контактом «–» на плате, при появлении щелчка исключают обрыв с цепях транзисторов VT1 и VT2. Если щелчка по-прежнему нет, неисправно реле К1. Сокращение времени принудительного кипячения менее 1 мин. указывает на высыхание или утечку конденсатора С3.

Если не работает помпа нужно исключить обрыв ТЭН-а подоргрева ЕК1, пробой VD9, обрыв или пробой VD10. Затем электромотор отключают от разъёма SP2 – SP3 и подают на него постоянное напряжение 10 – 12 В. Если мотор исправен, проверяют кнопки SB2 – SB3 на плате управления, они коммутируют пульсирующее напряжение амплитудой более 300 В, поэтому их контакты искрят и со временем могут подгорать. На контакты разъёмов CN2 и CN4 подают напряжение 10 – 12 В, в полярности обратной проводимости диода VD9. Если при нажатии кнопок SB2 или SB3 электромотор работает хуже, чем при его прямом включении, эти кнопки заменяют.

В схеме термопота VT-1188, Рис. 3, уточнено положение силовых разъёмов на основной плате по сравнению с Рис. 4 [1]. Расположение разъёмов показано на Рис. 4. В этом разделе описаны отказы, связанные с функцией самодиагностики процессора ic1, который управляет работой термопота. Если у чайника не включаются кипячение, подача воды и не светится ни один индикатор, скорее всего отсутствует вторичное напряжение питания. Для проверки трансформатора Т1 надо прозвонить обе его обмотки на обрыв или замыкание, первичную с разъёмов JP6 - JP9, контакты, обозначенные на Рис. 4 «к Т1» не отключают. Вторичную обмотку – отключив разъём AC-IN. Сопротивление обмоток Т1 – 1 кОм и 4 Ома. Потом прозванивают диоды моста VD1 – VD4 и исключают замыкание на его выходе. От разъёмов платы JP1 и JP2 отключают ТЭН ЕК1, его отключенные контакты обматывают липкой лентой (изолентой) и фиксируют выводы на корпусе чайника чтобы не болтались. Потом термопот без воды включают в сеть. На холостом ходу Т1 должен работать не менее 10 мин. Если он быстро нагревается и напряжение вторичной обмотки на разъёме AC-IN меньше 10 В его заменяют. Исправный Т1 подключают к разъёмам и чайник включают в сеть. В VT-1188 цепи вторичного питания изолированы от напряжения сети, но сетевое напряжение присутствует на всех разъёмах «JP…» платы. При соблюдении мер техники безопасности работа с термопотом, включённым в сеть таким образом, не опаснее работы с сетевым блоком питания. В норме переменное напряжение вторичной обмотки трансформатора Т1 на входе выпрямительного моста VD1 – VD4 равно 12 В, на его выходе постоянное напряжение равно 14 – 16 В, полярность «+» и «–» показана на Рис. 3 и 4. С выхода стабилизатора ic2 напряжение +5 В поступает на выводы 11, 12 процессора ic1. Если +5 В есть на выводах 11 – 12 ic1 и светится индикация, проверяют исправность процессора ic1 и оптопары ic3 на срабатывание блокировок.

1) Отвёрткой с изолированной ручкой на 3 – 5 сек. замыкают выводы 1 и 2 ic3, (они находятся под напряжением сети), если ic1 и ic3 исправны, через 3 сек. замигают светодиоды LED3 и LED5, Рис. 5, (L3 и L5 на Рис. 3) и заблокируются кнопки SW1 – SW4. Свечение индикаторов можно видеть, перевернув включённый в сеть чайник из положения вверх дном в обычное положение. При обычной работе чайника от сети переменное напряжение 220 В между разъёмом JP8 и шиной «N» (разъёмы JP2, JP4, JP6) выпрямляется диодом D8 и через сопротивление R15 пульсирующий постоянный ток 4 мА поступает на выводы 1 и 2 – входы оптопары ic3, она открывается и с её вывода 3, напряжение 5 В подаётся на вывод 6 процессора ic1. Если на вход оптопары ток не поступает, ic3 закрывается, на выводе 6 процессора ic1 появляется "0", и ic1 переходит в режим блокировки. Это происходит при перегорании предохранителя FU1, более чем 3-х секундного размыкания контактов аварийного термовыключателя SF1, при разрыве цепи D8 – R15 или при выходе из строя самой оптопары ic3. Неисправные детали заменяют. Если замены оптопаре ic3 нет, на время работы можно соединить перемычкой её выводы 3 и 4. Данная блокировка не включается при обрывах ТЭН-а и силовых контактов реле К1 [1]. Первичная обмотка Т1 подключена к сети 220 В перед SF1 и FU1, поэтому после срабатывания защиты и включения блокировки вторичное питание от платы не отключается. Эта блокировка отключается только после обесточивания чайника.

2) Шпилькой из одножильного провода замыкают два металлических контакта в верхней половине разъёма CN4 (красный), в которые запрессованы провода идущие от термистора RT. Рис. 6. Через 3 сек. начнут мигать LED1 и LED6. (L1 и L6 на Рис. 3), кнопки SW2, SW3, SW4 блокируются. Термистор RT с отрицательным ТКС подключён к схеме так, что при повышении температуры воды, когда его сопротивление уменьшается, напряжение на выводе 8 ic1 увеличивается. При температуре кипения воды сопротивление RT уменьшается примерно до 7,3 кОм, а напряжение на выводе 8 ic1 повышается примерно до 3,7 В, после чего режим кипячения отключается, индикатор LED1 гаснет и чайник переходит в режим поддержания температуры воды и начинает светиться, а затем мигать один из индикаторов выбранной температуры нагрева воды – LED3, LED4 или LED5. Если сопротивление RT становится меньше 7,3 кОм, а напряжение на выводе 8 iс1 больше 3,7 В, процессор диагностирует замыкание RT и включает блокировку. Отменяется блокировка нажатием кнопки SW1 «Кипячение», но если причина замыкания RT не устранена, то через 3 сек. блокировка включится снова. После кипения вода остывает и сопротивление RT повышается, когда оно увеличится  до 10,5 кОм, а напряжения на выводе 8 ic1 уменьшится до 3,5 В, процессор повторно включит кипячение. Значение выбранной для поддержания температуры воды на эти показатели заметно не влияет. Основные причины отказа и включения этой блокировки – уменьшение сопротивления или замыкание RT, или обрыв R13.

3) Отключить от разъёма CN4 термистор RT, через 3 сек. начнут мигать LED3 и LED6. (L3 и L6 на Рис. 3), кнопки SW2 – SW4 блокируются. В интервале значений сопротивления термистора RT от 10,5 до 550 кОм, в режиме поддержания температуры воды чайник будет включать ТЭН. При повышении сопротивления RT более 560 кОм, когда напряжение на выводе 8 ic1 станет ниже 0,2 В, процессор диагностирует обрыв RT. Блокировка отменяется нажатием кнопки SW1 "Кипячение", если обрыв RT не устранен, через 3 секунды блокировка включится снова. Основные причины включения блокировки – обрыв RT или R11, плохой контакт в разъёме RT или разрушение пайки его выводов на плате. Во всех случаях неисправности термистора RT его нужно заменить. Подключать резисторы параллельно RT нежелательно, они только уменьшат величину его ТКС.

Когда чайник находится в режиме "Остывание", светится только LED2, все блокировки так же срабатывают. 

Если +5 В на выводах 11, 12 процессора ic1 есть, а команды с кнопок SW1 –  SW4 не выполняются и нет индикации, осциллографом или частотомером проверяют наличие генерации на выводах 13 или 14 процессора, её измеряют между выводом 13 или 14 ic1 и «–» платы. Если генерация есть (4 МГц +/– 2 кГц, амплитуда 0,8 – 1 В), причиной неисправности может быть нарушение контактов или паек разъёмов CN1 на обеих платах, или обрыв проводов в жгуте, соединяющим эти разъёмы. При отсутствии генерации – неисправен процессор  ic1.

Не подключая чайник к сети 220 В напряжение на плату можно подать через разъём AC-IN. Для этого, отключив Т1, к разъёму подключают напряжение от внешнего источника питания, переменное 10 – 12 В, или постоянное 14 – 18 В, любой полярности. При таком включении, если процессор ic1 исправен, через 3 сек. сработает блокировка «1» и начнут мигать светодиоды LED3 и LED5, поэтому для нормальной работы ic1 выводы 3 и 4 ic3 нужно на время ремонта замкнуть между собой.

Схема термопота VT-1191 показана на Рис. 7, по сравнению с Рис. 5. [1] на ней уточнено подключение силовых разъёмов и ТЭН-ов. Импульсный безтранформаторный блок питания VT-1191 выполнен на микросхеме VIPer-12A. Его выходное напряжение +18 В поступает на входы стабилизаторов напряжения +12 В и +5 В основной платы. Минусовой выход БП подключён к шине «N», одному из проводов сети 220 В. Неисправный чайник без воды подключают к сети в такой последовательности: от ТЭН-ов ЕК1 и ЕК2 отключают провода, синий «Н» и белый «В», идущие от силовых контактов реле К1. Для этого откручивают гайки крепящие выводы «Н» и «В» к контактам ТЭН-ов на корпусе чайника. Клеммы отключенных проводов соединяют вместе липкой лентой (изолентой), а сами провода отгибают в сторону реле, они жесткие, поэтому их специально не фиксируют. Рис. 8, Рис. 9. 

 

Снятые гайки прикручивают на место. Сдвигают пластиковый чехол с клеммы сетевого провода, подключённого к контакту платы «N». К этой клемме будет подключен зажимом минусовый щуп мультиметра. Рис. 9. После включения чайника в сеть сразу начнёт светиться индикатор HL3 и включится ТЭН подогрева – ЕК2, который подключён к нормально-замкнутому контакту реле К1. Поочерёдно нажимают на кнопки SW3, SW2, SW1, (кипячение, снятие блокировки, подача воды), отмечают выполнение команд и включение индикаторов HL1 – HL2. Для проведения измерений чайник переворачивают вверх дном. Измерения начинают с выхода БП, напряжение 18 – 19 В должно быть на обоих выводах дросселя L2, на «+» конденсатора EL3, на С3, на анодах диодов D4 и D5. Напряжение +12 В проверяют на катодах диодов D2, D6 и D7, в норме оно равно 12 – 15 В. Напряжение +5 В измеряют на эмиттере Q4, выводах С4, R9 и на выводе №1 iс1. Все точки для измерения напряжения питания отмечены красным цветом на Рис. 9. Далее проверяют цепь термовыключателя SF2, которая подключена к сети переменного тока 220 В: R16, D8, R15, транзистор Q2, R10, разъём CN3, SF2, вывод 4 iс1. С неё на iс1 поступает сигналы о закипании – остывании воды. Точки для измерения напряжения в этой цепи отмечены зелёным цветом на Рис. 9.

При комнатной температуре контакты SF2 замкнуты, на базе Q2 и на R15 будет напряжение 0,6 В, на коллекторе Q2, на R10 и на выводе 4 iс1 – 0 В. В этом состоянии iс1 выполняет все  команды. При температуре 88 град.С контакты SF2 разомкнутся и напряжение на базе Q2 станет равно 0 В, на коллекторе Q2, на R10 и на выводе 4 iс1 будет 5 В. При разомкнутом SF2 (из-за гестерезиса его контакты снова замкнутся при понижении t до 75 – 80 град.С), процессор iс1 будет блокировать команду «кипячение». После нажатия и отпускания кнопки SW3 «HEAT» индикатор HL2 должен сразу погаснуть, а ТЭН кипячения ЕК1 отключиться. Он подключён к нормально-разомкнутому контакту реле К1. В случае, описанном в [1], отказ iс1 проявился в том, что он не «видел» напряжения на выводе №4 и не мог в нужное время включать и отключать кипячение воды.

Не подключая чайник к сети 220 В, постоянное напряжение на плату можно подать от внешнего источника питания. Рис. 10. Правда, в этом случае невозможно будет оценить работу блока питания, а цепь термовыключателя SF2 будет отключена от напряжения питания 220 В, поэтому придётся временно подключить между анодом D8 и источником напряжения +12 или +18 В сопротивление 10 кОм. Со стороны деталей напряжение +18 В подключают зажимом или пайкой к аноду диода D6, а минус питания подключают зажимом или клеммой к контакту платы «N». Можно припаять оба провода к плате со стороны проводников – параллельно выводам конденсаторов EL3 или С3.

 Обозначение силовых выводов на платах термопотов «Vitek».  

 L) – сетевой вывод, условно подключён к фазовому проводу сети 220 В после плавкого предохранителя и аварийного термовыключателя. 

 N) – сетевой вывод, условно подключён к нулевому проводу сети 220 В..   

 Н) – вывод силового контакта реле для подключения вывода ТЭН-а кипячения.  

 В) – вывод силового контакта реле для подключения вывода ТЭН-а подогрева воды.  

 Т) – вывод подвижного контакта силового реле К1, переключающего или включающего  ТЭН-ы. Он подключён к выводу L.

Автор: Паньшин Андрей. Москва.

Список литературы

  1. Схемы и ремонт электрочайников – термопотов
  2. Сайт https://msk.au.ru/8030049/

Теги:

Опубликована: 0 0
Я собрал 0 0
x

Оценить статью

  • Техническая грамотность
  • Актуальность материала
  • Изложение материала
  • Полезность устройства
  • Повторяемость устройства
  • Орфография
0

Средний балл статьи: 0 Проголосовало: 0 чел.

Комментарии (1) | Я собрал (0) | Подписаться

0
Публикатор #
На форуме автоматически создана тема для обсуждения статьи.
Ответить
Добавить комментарий
Имя:
E-mail:
не публикуется
Текст:
Защита от спама:
В чем измеряется электрическое сопротивление?
Файлы:
 
Для выбора нескольких файлов использйте CTRL

Discovery V8
Discovery V8
Конструктор регулируемого преобразователя напряжения LM317 ELM327 OBD II — адаптер с поддержкой CAN
вверх