Реклама ⓘ
Главная » Измерения
Призовой фонд
на апрель 2024 г.
1. 100 руб.
От пользователей

Реклама ⓘ

Прибор для регистрации состояния Атмосферного Электричества

Если объяснять упрощенно, что такое Атмосферное Электричество (АЭ), то лучше всего подходит школьное определение, говорящее, что на каждый метр расстояния от поверхности земли приходится примерно 130 вольт напряжения, возникающего из-за того, что ионосфера планеты бомбардируется солнечным излучением. Понятно, что 130 В/м - это усреднённое значение и на него влияет множество условий, поэтому, следуя старой русской поговорке, в которой говорится, что «лучше один раз увидеть, чем сто раз услышать», осенью 2011 собрал небольшой прибор для визуального контроля состояния АЭ и зимой-весной 2012 года провёл несколько наблюдений.

Суть эксперимента проста – преобразование атмосферного тока в напряжение. Происходит это на резисторе, один конец которого заземлен, а другой подключен к проводнику, имеющему на противоположном конце датчик в виде «антенны-метёлки», располагающейся в воздухе на некотором расстоянии от земли (рис.1). Затем сигнал с резистора отфильтровывается и усиливается электронным блоком, с выхода которого подаётся в компьютерную звуковую карту. Карта была доработана (открыты входы по постоянному напряжению) по рекомендациям журнала «Радио» №6 2007 (статья «Компьютерный измерительный комплекс», автор – О.Шмелёв). Для записи используется программа SpectraLAB.

Прибор для регистрации состояния Атмосферного Электричества
Рис. 1

На крыше жилого пятиэтажного дома было установлено пластиковое удилище и к нему прикреплено шесть метров провода КСПВ 2х0,5 (в двойной изоляции) с металлической метёлкой на верхнем конце (61 иголка, напаянные на 20-сантиметровые куски провода ПЭЛ-0,9. Провод КСПВ соединён с центральной жилой РК-75, оплётка которого вверху, на крыше, ни к чему не подключена, а внизу, на рабочем месте, заземлена на железобетонный каркас дома. Места соединения провода КСПВ с центральной жилой кабеля и экран коаксиала в этом месте были тщательно заизолированы от соприкосновения с воздухом. Коаксиал (простой телевизионный, RG-6) применён для того, чтобы ослабить помехи от близко расположенных компьютеров и другой импульсной шумящей техники.

Один из вариантов схемы электронной части показана на рис.2:

Схема прибора для регистрации состояния атмосферного электричества
Рис. 2

К входным клеммам подключен резистор R1 – это для того, чтоб на «метёлке» не накапливался высокий потенциал при выключенном S1. При включении же S1, параллельно R1 подключается резистор R2. И если внутреннее сопротивление каскада на ОР1.1 не учитывать, то получившееся входное сопротивление прибора можно оценить как 910 кОм. Эти два резистора и являются датчиками состояния АЭ. В некоторые «рабочие» моменты регистрации на них развивалось напряжение более 0,5 вольт, что вызывало уход графика за пределы компьютерной шкалы измерений, поэтому позднее был введён ещё один резистор – R3, сопротивлением 100 кОм. При его подключении выключателем S2 Rвходное прибора становится около 90 кОм, соответственно и напряжение на входе становится в десять раз меньше.

Первый фильтр низкой частоты на R4C1 настроен на частоту около 7Гц. Конденсатор составлен из двух, включенных параллельно, марки СГМ-4 – с малыми токами утечки. На ОР1.1, ОР1.2 и ОР2.1 собран усилитель с большим входным сопротивлением (по справочнику, более 10 ГОм) и возможностью подавления синфазной помехи (в данном варианте не используется). Точнее, это не столько «усилитель», сколько «входной блок» с усилением чуть больше единицы. Такой «малый» коэффициент усиления выбран только для того, чтоб наводимая помеха от сети 50 Гц не вводила ОУ в режим ограничения сигнала.  После ОР2.1 стоят ФНЧ на R13C5, двойной Т-мост на частоту 50 Гц и ещё один ФНЧ на R17C9. Такие же цепи с такими же номиналами деталей стоят и после ОР2.2, который усиливает сигнал чуть более, чем на 21 dB. На ОР3 собран выходной буферный повторитель. В него введена коррекция «нуля», так как при большом сопротивлении источника сигнала (около 2 Мом) на выходе ОР1.1 появляется постоянная составляющая. Подключении между 5 ножкой ОР1.2 и земляным проводом такого же двухмегаомного резистора проблему не решило, поэтому просто ввёл в схему R25 в цепь коррекции «нуля» ОР3. На месте ОР1 и ОР2 были проверены операционные усилители марок LM833, NE5532 и TL072. Вместо К544УД1 ставились КР140УД608, УД708. Все показали примерно одинаковый результат (при использовании операционников 140 серии резистор коррекции «нуля» подключается между 1 и 5 ножками).

Все детали на плату припаиваются с одной стороны. Большинство из них – SMD. Конденсаторы двойных Т-мостов составляются из нескольких и подбираются по прибору (например, 106н2 = 100н + 6н2) с последующей экспериментальной проверкой моста по подавлению. Перед проверкой надо обязательно дать деталям остыть до комнатной температуры – иначе параметры уплывают. Не обязательно добиваться максимального подавления именно на частоте 50Гц – можно один мост настроить на 1-3 Гц выше, а другой – ниже. В таком варианте больше вероятность того, что всё будет работать даже при изменении температуры внутри блока или частоты сетевого напряжения.

Размеры печатной платы (рис.3)  – 60х40 мм. Крепление деталей R1, R2, R3, R4 и C1 выполнено вне платы, навесным монтажом, прямо на контактах S1 и S2. Переключатели выбраны ТП1-2, новые, перед пайкой были разобраны, почищены и промыты спиртом

Печатная плата прибора
Рис. 3

К площадке «In» на рис.3 подпаивается проводник, идущий от точки соединения R4 с C1. Хотя, если С1 перенести на плату, то правый по схеме конец R4 тоже припаивается к площадке «In». При начальной проверке платы и последующей настройке, надо между этой площадкой и землёй впаять резистор. Например, 10 кОм. Такой же резистор можно припаять и между пятой ножкой OP1 и землёй – место под него разведено. Белые толстые линии на рисунке платы – это перемычки, выполненные проводом МГТФ.

При монтаже операционных усилителей обратите внимание, что они стоят «лицом» друг к другу, т.е. один развёрнут на 180 градусов относительно другого.

Схема чувствительна к наводкам, поэтому к качеству монтажа надо подойти с полной ответственностью. Все провода, в том числе и питания, должны быть жёсткими и не должны болтаться внутри корпуса. Все земляные проводники припаиваются к плате в одну точку около OP1. Провод, идущий к входной сигнальной «земле» должен быть максимально коротким – не более 5-7 см. Плата изготовлена из двухстороннего текстолита и пропаяна по черным точкам на земляных площадках рисунка голым проводником. Естественно, кроме мест под площадками «In», «Out», «+12» и «-12». Под ними, с другой стороны платы, удаляется фольга, затем берется три сантиметра голого лужёного провода диаметром около 0,6-0,8 мм, который сгибается пополам и вставляется в эти отверстия так, чтобы со стороны деталей получились проволочные стойки. К этим стойкам и припаиваются все входящие и выходящие провода. Можно фольгу под площадками не удалять, а сделать «пятачки», к которым припаять стойки – так будет механически надёжней. После полной проверки работоспособности конструкции, плата покрыта тонким слоем клея БФ, разведенного в спирте.

Корпус конструкции должен быть металлическим – например, от компьютерного блока питания, и толстым коротким проводником должен соединяться с точкой «земля» на плате. Входные резьбовые разъёмы закреплены на пластине из хорошего диэлектрика подходящего размера (можно применить оргстекло). Выходной разъём – стандартный звуковой minijack 3,5". Питающие провода впаяны напрямую. Блок питания сначала использовался выносной - лабораторный, двуполярный. При самостоятельном его изготовлении следует обратить внимание на долговременную стабильность выходного напряжения и его малые шумы (конденсаторов побольше поставить). Затем решил, что питание проще брать с компьютера – они же в данном варианте работают всегда вместе, поэтому в корпусе от старого CD-привода были собраны дополнительные LC фильтра по +12В/-12В и отдельный блок питания стал не нужен.

Общий коэффициент усиления прибора около 20dB (10 раз). Подавление на частоте 50Гц – около 170dB. Цифра, конечно, теоретическая, реально не выполнимая, взята из программы RFSim99, где и проводилось предварительное моделирование каскадов. На рис.4 приведён график АЧХ из этой программы. Частота среза по уровню -3dB – около 2,5Гц. На частоте 10Гц затухание 25dB, а на частотах выше 50Гц - более 130dB.

График АЧХ
Рис. 4

Теперь немного про «измерительную землю». «Земля» нужна реальная, ну, или максимально приближённая к реальной. Так как сам живу в стандартной панельной пятиэтажке, могу сказать, что хорошим выходом в этом случае является подключение к арматуре каркаса здания. Так как все несущие плиты сварены между собой, то дом можно представить, как один большой объёмный проводящий кирпич, лежащий на земле. Проще всего подключиться к металлическому ограждению балкона. Очистить от краски, просверлить отверстие, нарезать в нём резьбу или просто насквозь вставить болт с гайкой, занимает не более часа времени. Прижав гайкой достаточно толстый провод и заведя его к рабочему месту, получаем хорошую электротехническую землю. Если сеть в доме старая, двухпроводная (т.е. только нулевой и фазный провод), то к этой «земле» надо так же подключить и корпуса компьютера и монитора (лучше сразу капитально в удлинитель, питающий оргтехнику). Ко всем этим манипуляциям надо относиться очень серьёзно и с пониманием того, что Вы делаете! Нужно обладать хотя бы начальными знаниями по электротехнике, т.е. отличать «ноль» от «земли». В противном случае лучше ничего не делать и с АЭ не экспериментировать! Жителям же старых кирпичных домов можно посоветовать попробовать подключиться к водопроводной трубе с холодной водой (эти трубы по старым гостам должны быть в подвале приварены к заземлению дома). Ну, а счастливым обладателям современной «трёхпроводки» в квартире, нужно, скорее всего, просто соединить отдельным проводом входной «земляной» разъём конструкции с корпусом компьютера (например, надёжно прижать под один из крепёжных болтов блока питания).

После сборки и настройки конструкции, установки «метёлки» на крыше и проведения заземления, нужно изменить настройки в программе SpectraLAB. Главная цель – сделать так, чтоб получаемые файлы были минимально возможного размера. Для этого в меню «Options», команде «Settings» выставляются параметры как на рис.5, чтобы максимальная обрабатываемая частота была 50Гц:

Настройки в SpectraLAB
Рис. 5

Правда, при этом сильно сбивается таймер записи и по прошествии реальных тридцати минут он начинает показывать, что прошло чуть больше часа и двадцати двух минут, но это не очень мешает. Можно, конечно, выставить минимальные стандартные установки с нормальной работой таймера, но при этом получасовая запись будет занимать объём 14 Mb. В первом же случае получаются всего двухмегабайтные файлы.

После всех проверок и настроек нужно выключить S1 и провести пробную запись длительностью несколько десятков минут, допустим, тридцать-сорок. Полученная на графике линия должна быть достаточно тонкой и не уходить от нулевой отметки далее, чем на полделения при выставленном в программе значении Plot Top=0,5. Уход может быть связан только с прогревом при включении блока. Если на линии есть некоторая «лохматость» от наводок и пульсаций питания, то она не должна быть более четверти деления при Plot Top=0,5 (практически можно добиться и более мелких отклонений и девиаций линии).

Теперь самое интересное - результаты наблюдений. Как пример, на рисунках 5-7 приведены круглосуточные записи с полудня 6 по утро 10 марта с ремарками о погодных условиях. Записи делались длительностью от получаса (днём) до 7-8 часов (ночью). Затем скриншоты в графическом редакторе «склеивались» в один суточный кусок для просмотра долговременного состояния. Каждый следующий из приведенных здесь рисунков является продолжением предыдущего. Линия нулевого потенциала – это та, около которой колеблется график в дневное время. Начинаются все записи в 7:30 утра. Временная шкала – вверху. Время восхода и захода солнца представлены символами «солнышко». Сумерки у нас длятся около двух часов. График отклоняется на одно деление шкалы «Y» при входном сигнале 0,95 мВ. Ток, протекающий при этом через входные резисторы общим сопротивлением 910 кОм, соответствует 1,044 нА.

6 марта (рис.6). Утро было ясное, безветренное. Давление высокое. Температура -10. Днём воздух прогрелся до нуля градусов. Данных о ветре нет.

График измерения атмосферного электричества
Рис. 6

7 марта (рис.7). Ясноё тихое утро. Температура -15. После 15:00 ветер 3-5 м/с, воздух прогрелся до +1. С крыш течет, на дорогах ручьи.

График измерения атмосферного электричества
Рис. 7

8 марта (рис.8). Утро ясное и безветренное. Температура -19. После 15:00 ветер слабый, около 1 м/с. Температура +3. Капель, ручьи. Около 21:00 взошла полная луна. После 22:00 температура -2. Ночью график так и не ушёл в отрицательную зону.

График измерения атмосферного электричества
Рис. 8

9 марта (рис.9). Утро ясное и безветренное. Температура -16. После 11:00 ветер был около 2-3 м/с, а к 13:00 уже 3-5 м/с. К 16:00 температура в тени +3. Солнце. Капель. Ручьи на дорогах. К 18:00 ветра уже нет. В 20:00 температура была -2.

График измерения атмосферного электричества
Рис. 9

Короткие большие всплески в дневное время – это колебания потенциала, связанные в основном с движением воздуха – порывы ветра и пролетающие рядом с «метёлкой» птицы. В растянутом виде эти импульсы выглядят так, как показано на рис.10 (длительность всего участка – чуть более минуты):

График измерения атмосферного электричества
Рис. 10

Ниже показаны ещё два рисунка, на которых запечатлены моменты с дождём ночью:
4 апреля (рис.11). Утро безоблачное, ветер 1-2 м/с. Температура -1. Давление 755, днём упало до 750. К 10:00 на небе появилась лёгкая дымка и ветер 2-3 м/с. К 12:00 небо в плотной белой дымке, солнца не видно, ветер 10-15 м/с. После 16:00 небо очистилось, температура +15, но к 20:00 всё опять заволокло облаками. После 21:00 температура +10, давление 740. Ночью прошёл дождь – видно, как кривая ушла в отрицательную зону (примерно с 3 ночи до 5 утра).

График измерения атмосферного электричества
Рис. 11

5 апреля (рис.12). Утро безоблачное и безветренное. Температура +5. Давление 750. К 12:00 на небе появились легкие кучевые облака, ветер до 5-10 м/с. К 16:00 солнца совсем не видно за облаками, ветер ослаб до 3-5 м/с, но к 17:00 облака разбежались, ветер 5-7 м/с, солнце. После 21:00 начался дождь.

График измерения атмосферного электричества
Рис. 12

Ну, вот, вроде и всё. Прибор, как инструментальный усилитель, с некоторыми переделками можно использовать и в других измерительных целях, но это уже как говорится, совсем другая история…

Более подробно узнать про атмосферное электричество можно из статей В.Т.Полякова.

По возникшим вопросам пишите на sibmon@yandex.ru

Андрей Гольцов, г. Искитим

Список радиоэлементов

Обозначение Тип Номинал Количество ПримечаниеМагазинМой блокнот
OP1, OP2 Операционный усилитель
TL072
2 NE5532, LM833Поиск в магазине ОтронВ блокнот
ОР3 МикросхемаК544УД11 Поиск в магазине ОтронВ блокнот
С, С Конденсатор0.1 мкФ2 Поиск в магазине ОтронВ блокнот
С, С Электролитический конденсатор1000 мкФ2 Поиск в магазине ОтронВ блокнот
С1 Конденсатор0.01 мкФ2 Поиск в магазине ОтронВ блокнот
С2-С4 Конденсатор100 пФ3 Поиск в магазине ОтронВ блокнот
С5, С11 Конденсатор2 мкФ2 Поиск в магазине ОтронВ блокнот
С6, С8, С12, С14 Конденсатор0.1062 мкФ4 Поиск в магазине ОтронВ блокнот
С7, С13 Конденсатор0.2124 мкФ2 Поиск в магазине ОтронВ блокнот
С9, С15 Конденсатор0.056 мкФ2 Поиск в магазине ОтронВ блокнот
С10 Конденсатор1 мкФ1 Поиск в магазине ОтронВ блокнот
С16 Конденсатор3 мкФ1 Поиск в магазине ОтронВ блокнот
R1 Резистор
10 МОм
1 Поиск в магазине ОтронВ блокнот
R2, R4 Резистор
1 МОм
2 Поиск в магазине ОтронВ блокнот
R3 Резистор
100 кОм
1 Поиск в магазине ОтронВ блокнот
R5, R15, R22 Резистор
15 кОм
3 Поиск в магазине ОтронВ блокнот
R6, R7 Резистор
5.1 кОм
2 Поиск в магазине ОтронВ блокнот
R8, R9 Резистор
51 кОм
2 Поиск в магазине ОтронВ блокнот
R10 Резистор
27 кОм
1 Поиск в магазине ОтронВ блокнот
R11 Резистор
33 кОм
1 Поиск в магазине ОтронВ блокнот
R12, R25 Подстроечный резистор10 кОм2 Поиск в магазине ОтронВ блокнот
R13, R20, R26 Резистор
3.3 кОм
3 Поиск в магазине ОтронВ блокнот
R14, R16, R21, R23 Резистор
30 кОм
4 Поиск в магазине ОтронВ блокнот
R17, R24 Резистор
470 кОм
2 Поиск в магазине ОтронВ блокнот
R18 Резистор
1 кОм
1 Поиск в магазине ОтронВ блокнот
R19 Резистор
10 кОм
1 Поиск в магазине ОтронВ блокнот
R27 Резистор
47 кОм
1 Поиск в магазине ОтронВ блокнот
S1, S2 Выключатель2 Поиск в магазине ОтронВ блокнот
Клеммный зажим2 Для подключения антенны и заземления.Поиск в магазине ОтронВ блокнот
Добавить все

Скачать список элементов (PDF)

Прикрепленные файлы:

Теги:

Опубликована: Изменена: 03.04.2015 0 0
Я собрал 0 0
x

Оценить статью

  • Техническая грамотность
  • Актуальность материала
  • Изложение материала
  • Полезность устройства
  • Повторяемость устройства
  • Орфография
0

Средний балл статьи: 0 Проголосовало: 0 чел.

Комментарии (10) | Я собрал (0) | Подписаться

0
raxp #
...а вы не хотите защитить вход ОУ ограничителем на двух встречно-параллельных импульсных диодах?
Ответить
0
Андрей #
Нет, не хочу.
Они там стояли в самой первой версии прибора, но шунтировали своим сопротивлением входной резистор, поэтому были убраны за ненадобностью. Большое «тау» (кажется, так называется) входного ФНЧ и аккуратная эксплуатация прибора позволила проводить регистрацию и при снегопаде и в грозу. Пока что отказов не было.
Ответить
0
Олег #
А вас не смущает, что этот прибор будет замерять атмосферный ток, зависящий от многих причин, например, но не атмосферный потенциал? То есть этот прибор не может заменить электрометр, измеряющий статичное электрическое поле. В самом деле, антенну этого прибора можно сравнить с одной из обкладок конденсатора, а через конденсатор, как известно, постоянный ток не течёт. А как устроен чувствительный электрометр я не могу сказать, мне это и самому интересно.
Ответить
0
Андрей #
Не смущает. Так как он собирался как раз для того, чтоб понять, что такое АЭ, от чего возникает и зависит. И пока никаких «…многих причин…» замечено не было – всё, вроде, как учила нас физика.
Ответить
0
skf6709 #
Чем выше подвес антенны, тем выше напряжение на зонде. Возможно смещение рабочих точек затворов. Отсюда и перегруз
Ответить
0

[Автор]
r9o-11 #
Не понятно, про какой перегруз идёт речь...
Ответить
0
Игоревич #
Про арматуру здания глупо.... Проверено и не раз, наводки на арматуре жуткие. Такое заземление абсолютно не пригодно. Номиналы деталей в фильтрах порадовали. Ставили по несколько конденсаторов с разными номиналами? Фильтры такие, расчитывать практически бесполезно, отлаживать нужно только в железе. 107db конечно вы красиво написали. А что было на деле? Скорее всего ничего. Таким фильтром очень сложно "попасть" в сигнал помехи. Уверен что ни каких измерений проведено не было. В общем ниочем самоделка по сути.... И графики ваши... Их можно получить простейшей схемой на паре транзисторов. От схемы на паре транзисторов можно получить куда больше. В общем, ни кому не советую собирать.
Ответить
0

[Автор]
r9o-11 #
Так Вы бы текст почитали...
Ответить
Добавить комментарий
Имя:
E-mail:
не публикуется
Текст:
Защита от спама:
В чем измеряется напряжение?
Файлы:
 
Для выбора нескольких файлов использйте CTRL

Мультиметр Mastech MS8239C
Мультиметр Mastech MS8239C
Набор начинающего радиолюбителя Катушка Тесла
вверх