Главная » ИК техника
Призовой фонд
на январь 2017 г.
1. 5000 руб.
Академия Благородных Металлов
2. 1000 руб.
Radio-Sale
3. Регулируемый паяльник 60 Вт
Паяльник
4. 600 руб.
От пользователей
5. Тестер компонентов LCR-T4
Паяльник

Микросекундный интегратор фототока с фазовой задержкой прерывания интегрирования

Схема, представленная на рисунке 1, представляет собой двухканальный микросекундный интегратор фототока с фазовой задержкой длительности интегрирования, иначе говоря это оптический фотоприёмник, позволяющий детектировать стробоскопические оптические импульсы разной скважности и длительностью от долей микросекунд до десятков миллисекунд без перестройки длительности времени интегрирования, так как этот параметр зависит от фазы входного сигнала, и последующим импульсом сброса интегрирования.

Схема микросекундного интегратора фототока

Два канала интегрирования А1 и А2 нужны для последующей суммарно-разностной обработки сигнала с выхода интеграторов. В данной схеме используется интегратор фототока, выходной сигнал интегратора пропорционален площади участка ограниченного амплитудой напряжения и осью времени, если входной сигнал - постоянный ток, то выходной - возрастающая наклонная плоскость напряжения рис 2а. Точное аналоговое интегрирование осуществляется ОУ А1 и А2 с емкостной ОС – С3 и С4 . Основные составляющие ошибок интегрирования обусловлены напряжением смещения нуля Uсм и входными токами ОУ. Для устранения последнего был использован операционный усилитель в качестве интегратора с входными каскадами на полевых транзисторах, т.к. их затворы практически не потребляют тока, и весь фототок, генерируемый фотодиодом ФД1 и ФД2, течет через интегрирующие ёмкости С3 и С4 рис.1 ,а скорость возрастания выходного напряжения определяется величиной фототока. Напряжение смещения нуля Uсм может вызвать существенный дрейф выходного напряжения и может вызвать ложное срабатывание компаратора А3, что привело бы к сбою в работе схемы. Поэтому в качестве интегратора применялась микросхема операционного усилителя фирмы Texas Instruments ОРА350, которая имеет уровень смещения нуля выходного сигнала всего несколько милливольт и позволяет корректировать этот параметр при помощи потенциометров R7 и R8. Как известно, выходное напряжение интегратора, достигнутое в процессе интегрирования, не уменьшается до нуля при последующем нулевом вход­ном сигнале, а продолжает оставаться на заданном уровне при отсутствии “паразитных” входных фототоков, а в противном случае изменяться и достигает максимального значения Uип. Для компенсации “паразитных” входных фототоков возникающих в отсутствие стробоскопического импульса используется комбинированная оптопара, состоящая из фотодиода, включённого в обратной полярности, и светодиода - СД1, ФД3 и СД2, ФД4. Корректировка компенсации осуществляется потенциометрами R1 и R2 до тех пор, пока выходной сигнал интегратора при отсутствии входного импульса не станет горизонтальной линией или нулём. Это говорит о правильной работе интегратора, однако последнее делает практически невозможным правильное интегрирование последующих сигналов, так как для измерения и сравнения оптических импульсов перед их интегрированием необходимы одинаковые начальные условия. Для устранения этого эф­фекта выходное напряжение интегратора периодически необходимо «сбрасы­вают» до Uсм. В интеграторе для «сброса» используются ключи сброса, микросхема DD1 на рис. 1. К176КТ1 или К561КТЗ, при замыкании которых ёмкости С3 и С4 разряжается, и выходное напряжение падает до напряжения смещения нуля. Здесь управляющей «кнопкой» служит вход Е1 и Е2. В режиме «сброс» (ключ замкнут) задаются начальные условия интегрирования. Такой электронный контакт и цепь его нагрузки с источником управляющего сигнала гальванически не связаны.

Для формирования импульса сброса используется цепь , содержащая микросхему А3 компаратор, который работает следующим образом. С выхода 6 первого интегратора рис. 1. сигнал поступает на сравнивающее устройство –компаратор, который срабатывает при равенстве опорного сигнала и сигнала с выхода интегратора, уровень которого составляет 20 мВ ,рис. 2а и 2в, и корректируется потенциометром R10. Поэтому существенный дрейф нуля выходного сигнала предшествующего каскада интегратора вызвало бы ложное срабатывание компаратора и сбой в работе схемы. Компаратор должен иметь бесконечно большой коэффициент усиления при полном отсутствии шумов во входном сигнале и малый дрейф нуля . Такую характеристику можно получить, используя усилитель с очень большим коэффициентом усиления, этим требованиям отвечает ОУ ОРА350РА, имеющий возможность работы от однополярного источника питания. На выходе получается сигнал TTL. Далее выходной логический сигнал с компаратора поступает на схему формирования фазовой задержки импульса сброса интегратора, рис. 2б.

2-17-2.gif

Поскольку задержка импульса сброса интегратора не должна зависеть от частоты входного сигнала, поскольку стробоскопические сигналы поступающие на вход интегратора ФД1 и ФД2 имеют различную длительность и скважность, поэтому для формирования задержки импульса сброса была использована микросхема DD2 цифрового таймера КР1006ВИ1 для формирования фазовой задержки импульса сброса. Сущность работы схемы состоит в том, что конденсатор С13 линейно заряжается через последовательно соединенные резисторы R11 и R13, линейно разряжается через резистор R13. С приходом сигнала с компаратора начинается процесс линейной зарядки конденсатора до напряжения Uпор=1/2 Uпит. При достижение этого значения конденсатор начинает линейно разряжаться, даже при наличие сигнала на входе. При разряде конденсатора на выходе микросхемы формируется сигнал прямоугольный формы, именно этот сигнал и является сигналом фазовой задержки. Данная схема формирует фазовую задержку φ и стабильно работает при 0<φ<180 градусов.

Для увеличения частотного диапазона ёмкость конденсатора лучше брать 1 мкф. Сопротивление резистора R11 в большинстве случаев можно принять равным 100 кОм. Корректировку фазового сдвига производят потенциометром R13 и лучше выбирать номинал равным 100 кОм. Далее по отрицательному перепаду импульса с выхода таймера запускается ждущий мультивибратор DD3. Используя различные номиналы элементов R12 и С11 можно задать другое требуемое время работы мультивибратора. Мультивибратор формирует импульс длительностью 20 мс ,рис. 2г, поступающий на управляющие входы электронных ключей Е1 и Е2 микросхемы DD1, шунтирующих ёмкости интеграторов С3 и С4, и обнуляющих сигналы на выходах 6 интеграторов, тем самым создавая начальные условия для обработки последующих стробоскопических импульсов. С выходов 6 сигналы интеграторов поступают для последующей суммарно разностной обработки.

Альтаир НТПЦ Опубликована: 2010 г. 0 0
Я собрал 0 0
x

Оценить статью

  • Техническая грамотность
  • Актуальность материала
  • Изложение материала
  • Полезность устройства
  • Повторяемость устройства
  • Орфография
0

Средний балл статьи: 0 Проголосовало: 0 чел.

Комментарии (0) | Я собрал (0) | Подписаться

Статью еще никто не комментировал. Вы можете стать первым.
Добавить комментарий
Имя:
E-mail:
не публикуется
Текст:
Защита от спама:
В чем измеряется напряжение?
Файлы:
 
Для выбора нескольких файлов использйте CTRL

Лазерный модуль 650нм 5мВт
Лазерный модуль 650нм 5мВт
iMAX B6 - зарядное для Lion, LiPo, LiFe, Pb, NiCd и NiMH аккумуляторов МиниПК MK809V - 4 ядра, Android 4.4.2
вверх