Главная » Радиомикрофоны
Призовой фонд
на январь 2017 г.
1. 1000 руб.
Radio-Sale
2. Регулируемый паяльник 60 Вт
Паяльник
3. 600 руб.
От пользователей
4. Тестер компонентов LCR-T4
Паяльник

Похожие статьи:


Остронаправленный высокочувствительный микрофон

Когда-то давно я сделал остронаправленный высокочувствительный микрофон и выложил результаты его испытаний в интернете. С тех пор прошло уже много лет, но мне по-прежнему приходят запросы на приобретение этого изделия. В абсолютном большинстве случаев желающие приобрести имеют представление об этом изделии из художественных кинофильмов, обычно детективных. Поэтому, как только я высылал им фото, их интерес к нему пропадал. Для тех, кому действительно интересно такое устройство я решил написать эту статью, в которой кратко рассказать о том, как сделать его своими руками.

Остронаправленный высокочувствительный микрофон
Рис. 1

Структурно изделие состоит из параболического отражателя, приемного устройства,    расположенного в его фокусе,   НЧ усилителя, наушников и автономного блока питания. Все устройство закреплено на подвеске, позволяющей плавно поворачивать его в горизонтальной и вертикальной плоскости.
Чтобы представлять назначение каждого блока устройства напомню немного теории.

Пусть на параболический отражатель падает поток звуковых волн. Если источник звука достаточно далек, то  звуковой поток можно представить в виде потока параллельных векторов. Падая на поверхность   вектора отражаются    в область фокуса (см. рис.2).  Согласно волновой теории диаметр этой зоны d не может быть меньше длины волны падающего на отражатель звука. То есть, d ≥ λ, где  λ = c/f.  Здесь c – скорость звука, f – его частота.  Будем считать, что форма   параболического отражателя идеальна, а потому d = λ. Отсюда следует первая важнейшая характеристика устройства, его коэффициент   усиления параболического отражателя: Kp = (D/d)2

Смысл данного соотношения очень прост. Звуковой поток падает на поверхность параболоида S = πD2/4. Параболоид   концентрирует энергию потока в фокусе на поверхность приемного устройства площадью s = πd2/4. В результате на этой поверхности плотность  энергии звукового потока возрастает в Kp = S/s = (D/d)2 раз. На фото диаметр параболического отражателя  D = 90 см. Для волны λ = 15 см (f = 2000 гц.) получим Kp = (90/15)2 = 36.

Остронаправленный высокочувствительный микрофон
Рис. 2

Второй важнейшей характеристикой устройства является его острота направленности. Этот параметр важен потому, что необходимо не просто усилить звуковой сигнал, а усилить полезный сигнал. Для этого необходимо с помощью диаграммы направленности «вырезать» его из общего  звукового потока. Величину диаграммы направленности параболического  отражателя можно вычислить так. Поворачивая параболоид (см. рис. 3) можно повернуть его на такой угол α, что область концентрации звукового потока выйдет за   пределы приемного устройства. Поскольку размеры приемного устройства ограничены длиной волны принимаемого звука λ, то угол диаграммы направленности  в первом приближении можно выразить так:
α = arctg(λ/F).

В устройстве, показанном на фото, параболический отражатель имеет фокусное расстояние F = 36 см. Отсюда, для  λ = 15 см острота направленности устройства будет равна 22 градуса. Это  достаточно малый угол.  По этой причине параболический отражатель с приемным устройством установлены на подвеске (см.фото рис.1) которая позволяет плавно его поворачивать. Без этой подвески работать с устройством крайне затруднительно. К этому следует добавить, что в соотношения как коэффициента усиления (1), так и остроты направленности (2) входит длина волны λ. По мере ее уменьшения    растут как коэффициент усиления, так и острота направленности. Это хорошо заметно при прослушивании акустического горизонта. Лучше всего слышны звуки высокой частоты: на природе крики птиц,  в жилом районе звон посуды из открытых окон и форточек.

radiomic140-3.png
Рис. 3

 Что касается приемного устройства, которое находится в фокусе параболоида (см. рис. 4). Основной частью устройства является кронштейн. В его центральной части есть отверстие. С одной стороны в нем закреплен конденсаторный микрофон, а с другой   в него входит с небольшим зазором поршень из пенопласта, который приклеен к мембране. Сама мембрана вклеена в кронштейн. Кронштейн имеет окна, которые соединяют объем, ограниченный мембраной с объемом корпуса. Для увеличения акустического объема корпуса он заполнен синтепоном или иным волокнистым материалом.

Устройство помещено в фокусе параболического отражателя и работает следующим образом. Поток звуковых волн, отраженный параболическим отражателем падает на мембрану и заставляет ее колебаться. Из теории мембран следует, что под действием давления (звуковой волны) мембрана  изгибается по форме параболоида четвертой степени. То есть под действием звуковых волн перемещается преимущественно   центральная область мембраны. А это значит, что мембрана концентрирует энергию падающей звуковой волны   в колебания своей центральной зоны. В результате поршень, который вклеен в центральную часть мембраны, будет возбуждать в объеме между ним и микрофоном колебания с амплитудой существенно превышающей амплитуду падающей на мембрану звуковой волны. Коэффициент усиления  мембраны можно оценить так:
Km = (Dm/dk)2

Величину dk, т.е. размер зоны концентрации деформаций мембраны  в первом приближении ее можно принять равной dk ≈ 0,2 Dm. Отсюда коэффициент усиления мембраны (для Dm = 15 см) будет равен: Km ≈ 25.  Тогда общий акустический коэффициент усиления устройства будет равен: K =   Kp Km = 36 x 25 = 900.

Некоторые практические советы по изготовлению остронаправленного высокочувствительного микрофона.

radiomic140-4.png
Рис. 4

1. Параболический отражатель

В своем устройстве в качестве отражателя я использовал прямофокусный отражатель спутниковой антенны с параметрами: D = 900 мм, F = 360 мм, F/D = 0.4. Материал отражателя – алюминиевый лист толщиной 1 мм. Подвеска (устройство поворота отражателя в двух плоскостях) стандартная от спутниковой антенны. Стойка с треногой самодельная.
Сейчас прямофокусных спутниковых «тарелок», тем более алюминиевых нет. Их вытеснили стальные офсетные. В принципе это не столь существенно. Неудобство состоит лишь в том, что стальная тарелка существенно тяжелее алюминиевой, а из-за офсетной формы, вектор ее диаграммы направленности не столь наглядный как у прямофокусной. Спутниковую тарелку можно купить как в специализированных фирмах, так и на радиорынке.  Весте с «тарелкой» следует купить  и ее подвеску, включая подвеску конвертора. То есть следует купить спутниковую антенну, но без электроники (конвертора и тюнера).  Использовать для изготовления микрофона «тарелку» диаметром менее 900 мм нет смысла.

2. Приемное устройство

В качестве корпуса приемного устройства можно использовать любой цилиндрический контейнер подходящего (D ≈ 150 мм) размера. Например, можно использовать кружку из нержавеющей стали. Сейчас таких продают много.
Внутри корпуса размещается микрофонный НЧ усилитель. Я не электронщик, а потому использовал готовую схему усилителя и набор деталей КИТ ее реализующий. В качестве микрофона использовал конденсаторный микрофон диаметром около 1 см.   Вопросы согласования характеристик микрофона и НЧ усилителя выяснял у продавцов наборов КИТ.  
Выход усилителя и подвод к нему питания выведены на пятипиновый разъем, врезанный в корпус приемного устройства (см. фото).

Кронштейн (см. рис.3) выточен из пластика (я вытачивал из текстолита). Я не привожу его конкретные размеры. Достаточно задаться его внешним диаметром (у меня 150 мм) и диаметром микрофона (около 10 мм). Остальные размеры достаточно произвольные. Их соотношение можно взять, например, из приведенного рисунка 4.

Окна кронштейна (3 секторных окна) я высверлил, края обработал напильником. Затем подобрал тонкостенную металлическую трубку длиной миллиметров 50…100, с  наружным диаметром, равным диаметру  микрофона. После просверлил в кронштейне отверстие диаметров, равным наружному диаметру этой трубки. Край трубки заточил так, что получил из нее высечку. За тем подготовил пластину из пенопласта толщиной 5…7 мм.  Вращая  высечку, вырезал с ее помощью из пенопластовой пластины поршень. Поршень оставил в трубке.

После этих подготовительных работ можно вклеивать мембрану. Из папиросной либо иной тонкой бумаги вырезаем круг, равный диаметру кронштейна. Вклеиваем его в кронштейн с помощью водостойкого клея (резиновый клей, клей 88, «Момент» (каучуковый) и др.) После того как клей высох смачиваем (например ватным тампоном) вклеенную мембрану водой и даем ей высохнуть.  После высыхания мембрана туго натянется. После этого в мембрану можно вклеить пенопластовый поршень, который находится в металлической трубке. Для этого выступающий из трубки торец поршня смазываем водостойким клеем. Но не «Моментом», он интенсивно растворяет пенопласт. Резиновый или 88 – ой. Кладем кронштейн на плоскую поверхность мембраной вниз и в центральное отверстие вводим трубку с поршнем. Не вынимая трубки, выталкиваем из нее поршень до соприкосновения с мембраной. За тем, прижимая поршень к мембране,  осторожно вынимаем трубку из отверстия кронштейна. Все поршень вклеен. Спрашивается, зачем все эти сложности. За тем, чтобы поршень был установлен в отверстии кронштейна с минимальным зазором и строго коаксиально. 

После вклейки поршня с другой стороны отверстия закрепляем микрофон. Например, подматываем на его боковую поверхность бумагу и плотно вставляем микрофон в отверстие. Соединение микрофона с платой НЧ усилителя желательно сделать разъемным. При проверке и настройке НЧ усилителя микрофон придется многократно отключать и подключать к  плате усилителя. Кронштейн с вклеенной мембраной и микрофоном закрепляется в корпусе приемного устройства с помощью боковых винтов (саморезов). После того как НЧ усилитель настроен его плата закрепляется в корпусе приемного устройства, например с помощью термоклея. После этого корпус приемного устройства заполняется волокнистым материалом (синтепон, хлопковая вата и т.п. волокнистым материалом) и закрывается собранным кронштейном. Чтобы защитить бумажную мембрану от повреждения ее  следует закрыть не очень толстой (8…10 мм) пластиной поролона (пенополиуритана). Поролон  закрыть тонкой полиэтиленовой пленкой. Такая защита сколько ни будь существенно качество приема не снижает, но защищает мембрану от дождя и шума ветра.

3. Блок питания

Сейчас полно недорогих малогабаритных аккумуляторных батарей на основе которых можно сделать блок питания устройства. Кроме своего прямого назначения он используется также для коммутации. То есть аккумуляторная батарея размещается в корпусе, который используется для закрепления в нем следующий элементов. Выключатель питания, резистор управления уровнем сигнала с НЧ усилителя, пятипиновый разъем для подключения приемного устройства (на фото виден кабель, соединяющий разъем приемного устройства и блока питания). Кроме этого разъем для подключения наушников, и, при необходимости, записывающего устройства, которое содержит аналоговый вход.

После того как все блоки готовы устройство собирается в целом. Приемное устройство закрепляется вместо конвертора в фокусе спутниковой тарелки. С помощью штатной подвески тарелка устанавливается в подходящей треноге. Кабелем соединяем блок питания и приемное устройство. Подсоединяем наушники.  Все, высокочувствительный остронаправленный микрофон готов к работе. Осталось только включить питание и начать прослушивать акустический горизонт.

Волков Ю.В. Опубликована: 2012 г. 0 0
Я собрал 0 0
x

Оценить статью

  • Техническая грамотность
  • Актуальность материала
  • Изложение материала
  • Полезность устройства
  • Повторяемость устройства
  • Орфография
0

Средний балл статьи: 0 Проголосовало: 0 чел.

Комментарии (0) | Я собрал (0) | Подписаться

Статью еще никто не комментировал. Вы можете стать первым.
Добавить комментарий
Имя:
E-mail:
не публикуется
Текст:
Защита от спама:
В чем измеряется электрическая мощность?
Файлы:
 
Для выбора нескольких файлов использйте CTRL

Конструктор - темброблок на LM1036
Конструктор - темброблок на LM1036
DC-DC регулируемый преобразователь 1.5-37В 2А с индикатором Набор для сборки - LED лампа
вверх